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SuperCDMS Soudan Overview



WIMPs off Ge

SuperCDMS Soudan

Looking for Sl elastic
scattering of relic

*
*

15 Germanium detectors
0.6 kg each
Operational since March of 2012

*
*

interleaved
Z-sensitive

lonization &
Phonon detector |

Z

>

3-D fiducialization from measurement of
z-symmetric ionization or phonon response
and outer “guard” channels

Data taken from Mar 2012 — present;
The two analyses presented here use a
subset of the full dataset
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Optimizing for Low Mass

Experiments with lighter targets and lower thresholds have the advantage when looking
for WIMPs with mass < 10 GeV/c?

7 GeV/c? WIMP-induced recoil spectrum

o=10% cm?
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Our strategy:

Ge is a relatively heavy target so
go as low in threshold as
possible

SuperCDMS Low-Mass: minimum
recoil energy 1.6 keV

CDMSlite Run I: minimum recoil
energy ~0.8 keV

We expect background events in the signal region!! Tradeoff is greater sensitivity

to low mass WIMPs.



Backgrounds

Bulk electron recoils =
Compton background and 1.3 keV
activation line

sidewall & surface events =
betas and x-rays from 21°Pb, 210B;,
recoils from 2°°Pb, outer radial

comptons and ejected electrons from
compton scattering

for modeling ?1°Pb bg in Geant4, see P. Redl’s talk

Cosmogenic & radiogenic
neutrons
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lonization vs phonon
distinguishes NR from
bulk ER

Use division of energy
between inner and outer
sensors, “radial partition”

-

- Use division of energy
. between sides 1 and 2,
T

“z-partition”

Use active and passive
shielding. Simulation
determines remaining
irreducible rate



Backgrounds

Note: event-by-event yield and z-partition discrimination not possible for COMSlite

Bulk electron recoils =
Compton background and 1.3 keV
activation line

sidewall & surface events =
betas and x-rays from 21°Pb, 210B;,
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CDMSIite First Results



(Ultra) Low lonization Threshold
Experiment: CDMSlite

Neganov-Luke amplification of phonon response allows operation at very low

enerqgy thresholds
m i Ve = 60 V
@ 2/ ] Luke et al. NIM
[RRD & = # A289, 406 (1990)
peoll % %) Vg = 100 V
ooooo N c
3
WIMP @ ©
« Vg = 140 V
Electrons and holes radiate phonons
proportional to V. as they drift to the
electrodes. =>Apply large V. to

amplify ionization signal 1024
Channel number

lonization and phonon measurements are redundant in this mode; trading-off
background rejection for lower thresholds



CDMSIite First Analysis in 2013

* One 0.6 iZIP for ~10 live days Observed spectrum (keV, )
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CDMSIlite Run I: Exclusion Limits
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World-leading limit w/ ~10 day exposure and one detector!
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CDMSIlite Run |l

Ongoing since Jan 2014 with
same detector (T5Z72),
operating at 70V bias

Goal: take 6 months of data
to better understand
backgrounds and attempt
subtraction to improve
CDMSlite sensitivity; explore
use of phonon radial cut to
reject some background

~50% reduction in noise

Operating at 70V bias;
prebiasing reduces leakage
current at start of run and
improves livetime

Run Il Voltage scans

Optimal signal-to-noise

~70 V operation
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First SuperCDMS WIMP Search
w/

background rejection



Analysis Summary

Dataset: 7 lowest threshold iZIPs w/ data taken from Oct. 2012- June 2013. All singles in
analysis energy range blinded during cut tuning, except data following 2>2Cf calibration.
Blinded data totals 577 kg-days. Non-blind data not used for limit calc.

Lindhard nuclear-recoil energy [keVnr]
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Data quality

Efficiency
©
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0.6}
+ preselection

0.4

0.2} + Boosted Decision Tree

0.0

2 4 5 8 10 12
Total phonon energy [keV]
Efficiencies: measured with neutrons from 2>2Cf.

Geant4 used to correct for multiple scattering, yields
~25% correction

Data Quality:
* Reject periods of high/abnormal noise
* Reject atypical operational periods

Trigger and Analysis Threshold:

e Select periods of stable, well-defined
trigger threshold

e Analysis thresholds based on time-
varying noise baseline

Preselection:

e Single-detector scatter

* Muon veto anticoincident

e jonization fiducial volume

* lonization energy and phonon
partitions consistent w/ NR

Boosted Decision Tree
*  “tight” phonon fiducial volume and
ionization yield at low energy
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Boosted Decision Tree (BDT)

Discrimination lies in correlations between 4 parameters in partition and energy
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Unblinded Data

Eleven candidates seen, 6.2 +1.1 -0.8 expected
Lindhard nuclear-recoil energy [keVnr]
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Post-unblinding analysis

events passing “preselection”

—e— Data
Bl wive

I sidewall *Pb
I sidewall *°Pb+” B
B Face *'°Pb+ Bi
B 1.3 keV line

I Comptons

Background consistent with v

expectations overall and on most
individual detectors

Number of events / 0.04

Background model accurate in
full preselection region

”|lll|l llll l IIIIIII| I IIIIIIII

Residual

: p-value = 0.26
4911111-01.51111(1)11110.151_1__111
Shorted ionization guard on T5Z3 10 GeV BDT output
may have affected background T T— 005 shorted
model performance—further D st B o eciaromd mpecaton ionization guard
- C :
study ongoing @ af - l
© N
. . Q 3
Poisson p-value for T5Z3 is @ f *
0.04%, and even lower g 2
considering only high event R
energies OE

T1Z1 T2Z1 T2Z2 T4Z2 T4Z3 T5Z2 T5Z3

Detector
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Spin-independent Scattering Constraints

90% C.L. optimal interval upper limit, no background subtraction, treating all
observed (eleven) events as WIMP candidates

w
©

-3

—
OI

—

(=
N
o

—

(=
N
=

IS
n

WIMP-nucleon cross section [cm?]
o

—

(=
A
W

410

WIMP-nucleon cross section [pb]

—_
o

—
oI
4

44 LN
1073 4 5 6 7 8 910

Gray bands: propagated systematic unc.
from fiducial volume + nuclear recoil
energy scale + trigger efficiency

WIMP mass [GeV/c?]

New Perspectives 2014

CoGeNT strongly disfavored
in model-independent
scenario

CDMS 11 (Si) disfavored under
assumption of standard halo
model and A% coupling

Competitive constraint for Ge
up to 20 GeV/c?; dedicated
HT analysis yet to come

Disagreement between limit
and sensitivity at high WIMP
mass mostly due to events on
T5Z3.
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Low Mass WIMP searches

w/
SuperCDMS Generation 2



S r\‘AB WIMP Searches w/ SuperCDMS
‘ SNOLAB

MINING FOR KNOWLEDGE
CREUSER POUR TROUVER... L’EXCELLENCE

) ] SNOLAB Ladder Lab
~100 kg of mixed Ge/Si payload, GHENN %

w/ 5% detectors configured in w Mo cm X33 i §
CDMSlite mode | AR

Dilution
Refrigerator

P
b sp, s d/'ng

\l fprd s L T, . * Locate in North America’s
ooy P S deepest underground lab
* Bigger iZIP detectors
» Cleaner shielding, w/ active
neutron veto
* Upgraded electronics
 Room to expand to 400 kg

Water and Poly outer shielding
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Improvements for Low-Mass Searches

* Bigger detectors: reduce surface BTN AP ER:Ne
events, accumulate exposure faster, ' 1.4 kg
lower fabrication costs '

e 3-4X Better resolution in ionization

Q,,, : Side 1:-4.0 V bias |

and phonon channels: lowers trigger

threshold AND improves separation of mi
signal from background wof

60 keV (*'Am)
303 keV ('**Ba)
356 keV ('*Ba)
384 keV ('**Ba)

; lHI
ity

e > 10X Cleaner: reduces intrinsic sources

Number of Events

S Myl

of background; applying levels

100 i :” :
demonstrated by published literature will : JUWW W 1F

50

reduce backgrounds by > 10X

o_IIII

Q,,, [keV]

Note: background rejection demonstrated with Soudan
detectors already meets requirements for <1 event
background for 10 GeV WIMP searches!
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Brief discussion of DM-Ice



Annual modulation with DM-Ice

Resolving the DAMA annual modulation puzzle
remains a high scientific priority

DM-ICE

Aims to deploy ~200 kg of
Nal crystals on ICECUBE
strings, within the
ICECUBE detector

Backgrounds tied to seasonal
effects will modulate with a
different phase in the
Southern Hemisphere

Backgrounds and sensitivity described in:
Astropart. Physics 35 (2012), 749-754

New Perspectives 2014

23



counts / day / keV / kg

DM-Ice Staged Approach

DM-lcel17 (running now) DM-Ice250 North DM-Ice250 South

14

ETTTTTHR
HTTTTTH )

A 3 »1»’_—jf«fv.»‘
v -‘,A.y l‘!‘: '(.l’y L.

Test Detector at SOch Pole Modulation Search in Northern Modulation Search at South

Hemisphere | Pole

" DM-Ice17

0 e j;-fjg\jz(iv:14o1.4ao4

Energy (keV,_)
17 kg of Nal(Tl) at 2450m depth portable 250kg Nal(Tl) array if modulation seen in North and
in operation since 2011 existing shield, ready in 2015/2016  environmental effects ruled out

Funds for DM-Ice250 North requested with 2013 G2 competition
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Other searches with Nal (world-wide)

R&D for clean Nal crystals is key; technology was locked up by DAMA for some years,

but situation is changing

SABRE: reducing intrinsic
background by order of
magnitude or more with ultra-
clean crystals; use Borexino CTF
as active shield, deploy in Gran
Sasso

ANAIS: similar setup to DAMA,
deployed in Canfranc, has
funding for 200-kg array, MOU
with DM-Ice

KIMS: running ~100kg Csl array,
will upgrade to include Nal
crystals in 2015, deployed in
Yangyang mine

KamLAND-PICO: use KamLAND LS

detector as active gamma veto,
deploy up to 1 ton of Nal crystals

Cross-section [cm 2] (normalised to nucleon)

/Ill]lllllll’lll\\ll\\\\\\\\\\‘
5 6

1

WIMP Mass (GeV/c?)
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7 http:/ /dmtools.brown.edu/
Gaitskell Mandic,Filippini

PICO-LON-III design
Side view

1Scm Imm

—

15cm imm

PMT >R1166P

Upper view

|

15cmX15¢cm
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Summary

This past year saw the first results from SuperCDMS Soudan:

Search for Low-Mass WIMPs with voltage-amplification (CDMSlite); see PRL
112 (2014) 041302 for more

Search for Low-Mass WIMPs with full background rejection capability of iZIPs;
see arXiv 1402.7137 for more

CoGeNT interpretation of WIMPs strongly disfavored in model-
independent scenario; CDMS 1l (Si) region disfavored under standard halo
model and A? coupling

SuperCDMS SNOLAB will have complementary sensitivity in searches for high-
mass WIMPs and unprecedented reach in searches for low-mass WIMPs
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